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Abstract. This paper presents the implementation in FPGA (Field
Programmable Gate Array) of a digit-serial multiplier that operates efficiently
over finite fields GF(2"). Arithmetic operations on GF(2"), specially
multiplication, are fundamental for cryptography, error control coding and digital
signal processing. Design and construction of efficient architectures to perform
this arithmetic operation is of great practical concern. Bit-serial architectures for
GF(2") multiplication are very efficient for space complexity, but they are not
suitable for time complexity; in the other way, bit-parallel architectures compute
this operation in a single clock cycle, but they require a great amount of physical
chip-area. In digit-serial multiplication, groups of bits known like digits, are
processed in a single clock cycle. This allows us to design the circuit in a rank of
time and space efficiencies which can be defined by the selected digit size. We
have constructed a digit serial multiplier that operates in the field GF(2%). Tt is a
field recommended by the NIST (National Institute of Standard Technology) for
Elliptic Curve Cryptosystems (ECC). We have used the tools of computational
package ISE Version 8.11 of Xilinx for our design: VHDL (Hardware Description
Language) to describe the circuit, and ModelSim for the simulations of the
multiplier, which has been implemented in a FPGA Spartan 3 in a card prototype
of Digilent.
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1 Introduction

Arithmetic operations over finite fields GF(2") are widely used in cryptography, error
control coding and signal processing. In particular, multiplication is specially relevant
since other arithmetic operators, such as division or exponentiation, which usually
utilize multipliers as building blocks. Hardware implementation of field
multiplication may provide a great speedup in procedure’s performance, which easily
exceeds the one observed in software platforms.

We represent a finite field with g elements as GF(g). For computational
applications the fields of extension GF(2), represented by GF(2") are very important
due to his possible representation by digital logic. Representation of field elements
has a fundamental importance to determine the efficiency of arithmetical architectures
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to compute the basic operations on the field. There are different basis to represent the
elements of the field GF(2™), for example: polynomial or standard basis [1], normal
basis [2] and dual basis [3]. Use of certain basis determines a particular type of
algorithms and architectures for GF(2") multiplication, associated with time and
space complexity of the circuit. Considering GF(2") like a vector space on GF(2), the
elements of the field can be seen like vectors of m-bits. In this situation, the arithmetic
operation of sum is relatively little expensive, whereas the multiplication is the most
important and one of most complex. One of the main application area of the digit-
serial multipliers on finite fields GF(2™) is cryptography. Nowadays, these systems
require a great efficient performance in speed, area requirements, power consumption
and security.

Generally, software implementations of arithmetic operations on finite fields
require great resources of calculation and great amounts of memory, which affect the
performance of a calculation system. Due to this recently we found in the state-of-the-
art several proposals of hardware implementations of such operators [4], [5], [6], [7],
[10]. We presented here the FPGA implementation of a digit serial multiplier that
operates over the field GF(2*%), that is a field recommended by the NIST (National
Institute of Standard Technology) for Elliptic Curve Cryptosystems (ECC). We used
reconfigurable devices like FPGA’s, due to its characteristic of reprogramming,
which allows to a greater facility in verification and redesign process.

2 Algorithm Description

Finite field multiplication of two elements A and B in GF(2") to obtain a result C =
A*B mod p(x) (where p(x) it is the irreducible polynomial) can be made with different
logical architectures: serial, parallel or digit serial. Digit serial multiplication
algorithm introduced in [4] for binary fields GF(2"), is very efficient in area
consumption, time and power, and we have use it in this work. Several coefficients of
the multiplying B are processed at the same time. The number of coefficients that are
parallel processing is named the digit size, and it is defined as D. Let d= [m/D] be the
total digit number.

Let 4,B be:
m—1 ) d-1
A=Y aa’, B=Y Ba”
Jj=0 i=0
D-1 )
Where B=>0b, o/, 0<i<d-1 )
I
d-1
C = ABmod p(x) = A)_ B.a” mod p(x) @)

i=0
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C =[B,A4+ B,(Aa” mod p(x))
+B,(Aa”a” mod p(x)) +... (3)
+B, (Aa”“a” mod p(x))Imod p(x)

Then, we present the next algorithm for multiplication.

Digit Size Multiplier Algorithm:

[—1-1
m—1 D

Input: A= Zaja’ ,where a, € GF(2) and B = ZBlaD"

=0

i=0
where B; is defined in equation 1.
m=1 )
Oupu: C= A*B =Y c,a' where ¢, € GF(2)

i=0

1. C«0

2 fori=0to[~]-1do
D

3 C«BA+C

4. A<« Aa”mod p(x)
5. endfor

6. Return (Cmod p(x))

3 Digit Serial Multiplier Architecture

The digit size multiplication of A(a) and B(a) over finite fields is an operation more
complex than addition and requires 3 steps for its calculation: [4] [9] [10].

e A polynomial multiplication
¢ A main reduction operation module the irreducible polynomial.
e A final reduction operation module the irreducible polynomial.
Figure 1 shows the architecture of digit serial/parallel multiplier traced from LSD-

First algorithm in [4]. This architecture is also called single accumulator multiplier
(SAM) since it uses a polynomial multiplication that is the multiplier core.
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These architectures are widely used in hardware implementations for cryptographic
applications. As you can see, the entrance polynomials 4 and B are 163 bits
polynomials. They are introduced to multiplier core where the partial products and
sums are computed. This operation is defined as C= B;*4+C. Later, the main
reduction 4 = A*a” mod p(x) occurs, and finally the reduction operation C mod p (x)
is made. Polynomial multiplication circuit (multiplier core) computes the intermediate
results (partial additions and products) and stores them in the accumulator C.

A J 163 Main Re duction
* 1
L il
e -]
Btm immﬂmjn[m ;
: Mulfplier Core
2
Accurmulator 167 ;
i Final Reduction
mod p(a) !
:
163 E 3

| C'=AB mod p(a)

Figure 1. Digit multiplier architecture using a digit size (D=5) for GF (2'®*).

In this operation are obtained m columns and D rows in each clock cycle. Figure 2
shows the structure of the multiplier core (step 3 of the algorithm).
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Figure 2. Multiplier core using a digit size (D=>5) for GF (2'®%).
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Function of main reduction circuit is to shift 4 left by D positions and to reduce the
result mod p(x) (step 4 of the algorithm). The figure 3 shows the structure of main
reduction circuit.

The final reduction circuit reduce the contents in the accumulator to get the final
result C (step 6 of the algorithm). Figure 4 shows the structure of final reduction. The
figures 2, 3 and 4 denotes an AND gate with a black dot and a XOR gate as a vertical
line between two black dots.
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Figure 3. Main reduction circuit using a digit size (D=5) for GF (2'®).
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Figure 4. Final reduction circuit using a digit size (D=5) for GF (2'%%).

4 Implementation of Digit Serial Multiplier in FPGA

All tests and measurements were made in a prototype card of Digilent that contains a
FPGA SPARTAN3: XC3S200-FT256. The FPGA contains 200,000 gates, 960 cell
logic blocks (CLBs) and 1,920 slices.
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4.1 Previous calculations of space and time complexities

The space complexity based on the number of logic gates is shown in Table 1.

Table 1. Space complexity of the digit multiplier.

Irreducible Area Complexity
Polynomial (Gates)
General (m+k)D XORs +
(m+k+1)D ANDs

In table 2 is shown the space requirements for a finite field GF(2**’) that use the
irreducible polynomial P(x)=x’ +x’ +1.

Table 2. Space complexity of the digit multiplier that operates in the finite field GF(2%*°) for
different values of D.

m D Space complexity
Gates Slices
239 5 2445 1222
239 10 4890 2445
239 30 14670 7335
239 60 29340 14670

We have determined the time complexity previously making the following
considerations:

Frequency of FPGA that is handled by prototype card SPARTAN 3 is 50 Mhz.

Then:
=50 Mhz ; T=1/50 MHz = 0.02 useg in one clock cycle
Trspe = 0.02 useg * clock cycles (d= Total digits or clock cycles)
Where: d = m/D clock cycles

Example of time using the digit multiplier over a finite field GF(2**).
Digit Multiplier with m=239 bits and D=20
d=m/D = 12 digits or clock cycles
T=0.02 pseg * 12 = 0.24 useg

Figure 5 shows the time complexity in microseconds using the finite field GF(2**?)
for different values of D. The frequency used is 50 MHz, with a T'= 0.02 useg.
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Figure 5. Time complexity in useg for digit serial multiplier for different values of D.

4.1 Implementation Results

Figure 6 shows the area complexity (slices) reported by the synthesis tool for
different values of D. We can observed that for m=239 bits the space of FPGA is used
almost in its totality with a value of D=5, that it requires 1,918 slices of a total of
1,920 slices from the FPGA.

Digit Multiplier (Slices)
4,000 —
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3,000

& 2,500
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D=5 D=10 D=20
Digit Size

Figure 6. Area complexities (s/ices) for digit serial multiplier in FPGA.

In the figure 7, we presented the time complexity according to the clock cycles.

Digit Multiplier (# clock cycles)

Clock Cycles

D=5 D=10 D=20
Digit Size

Figure 7. Time complexity of the digit serial multiplier according to the clock cycles for
different values in D.



302 Mario A. Garcia-Martinez, Rubén Posada-Gémez, Carlos Tejeda-Calderon

4 Comparison with Others Architectures

We compared our multiplier with some multipliers proposed in [7], [9], [10].

Table 3. Time complexity for Software/Hardware implementations reported in [7].

Implementation  sw/hw m Mult. Platforms
Lopez (1999) SW 162 10.5mS  UltraSparc
300 Mhz
Savas (2000) SW 160  18.3uS Micro ARM
80 Mhz
Rodriguez (2000) SW 163  5.4pS Pentium II
450 Mhz
Rosner (1998) HW 168  4.5mS FPGA-XC4052
16 Mhz
Orlando (1999) HW 167 021mS FPGA-XCV400
76 Mhz
Lee (2000) HW 192 2.88uS Not implemented
Garcia (2004) HW 239 3.1puS Virtex-300
(75 Mhz)

Table 4. Time complexity for digit serial architectures reported in [9].

m=167 Digit Clock Montgomery
Size (Mhz) (msec)
4 85.7 0.55
8 75.5 0.35
16 76.7 0.21

Table 5 Time complexities of digit multipliers reported in [4].

Digit Size | Field m Platform Time
D=16 (msec)
155 VLSI 40 Mhz 39
155 Xilinx FPGA 18.4
XC4020XL, 15 Mhz
113 Xilinx FPGA 3.7
XCV300, 45 Mhz
155 VLSI, 66 Mhz 5.7
167 Xilinx FPGA 0.21
XCV400E, 76.7 Mhz

In the presented tables, we can observe a greater efficiency in operation time of our
multiplier compared with the results reported in the state of the art. The digit
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multiplier that we have presented computes a multiplication in a time of 0.24 useg
using a digit size D=20 for a finite field GF(2**’).

4 Conclusions

We have presented the implementation in a FPGA Spartan3 of Xilinx, of a digit
serial multiplier that operates in the field GF(2*) and that uses an irreducible
polynomial P(x) = x”° + x’ +1, which are values suggested by the NIST for
cryptographic applications of elliptical curves ECC. Has been shown that with the
selection of the digit D, can be obtained an efficient implementation in the FPGA
considering the time and space complexities that are required for specific
applications. A direct application of our multiplier will be the construction of a
cryptoprocessor for Elliptic Curve Cryptography, considering that is an important
component for several systems that they require of a great performance in speed, area,
power consumption and security.
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